(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
-(0, z0) → 0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
-'(s(z0), s(z1)) → c4(-'(z0, z1))
S tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
-'(s(z0), s(z1)) → c4(-'(z0, z1))
K tuples:none
Defined Rule Symbols:
+, -
Defined Pair Symbols:
+', -'
Compound Symbols:
c1, c4
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
+'(s(z0), z1) → c1(+'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
-'(s(z0), s(z1)) → c4(-'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+'(x1, x2)) = [2]x1
POL(-'(x1, x2)) = [2]x2
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(s(x1)) = [3] + x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
-(0, z0) → 0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
-'(s(z0), s(z1)) → c4(-'(z0, z1))
S tuples:
-'(s(z0), s(z1)) → c4(-'(z0, z1))
K tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
Defined Rule Symbols:
+, -
Defined Pair Symbols:
+', -'
Compound Symbols:
c1, c4
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
-'(s(z0), s(z1)) → c4(-'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
-'(s(z0), s(z1)) → c4(-'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+'(x1, x2)) = 0
POL(-'(x1, x2)) = x1
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(s(x1)) = [2] + x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
-(0, z0) → 0
-(z0, 0) → z0
-(s(z0), s(z1)) → -(z0, z1)
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
-'(s(z0), s(z1)) → c4(-'(z0, z1))
S tuples:none
K tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
-'(s(z0), s(z1)) → c4(-'(z0, z1))
Defined Rule Symbols:
+, -
Defined Pair Symbols:
+', -'
Compound Symbols:
c1, c4
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))